Towards Reducing Blockchain Gas Fees via Multi-Query
Optimization [Vision]

Duy Cuong Nguyen Vinh Duc Tran Van Dang Tran
Hanoi University of Science and Hanoi University of Science and Hanoi University of Science and
Technology Technology Technology
cuong.nd195845@sis.hust.edu.vn ductv@soict.hust.edu.vn dangtv@soict.hust.edu.vn
Quang-Trung Ta Tien Tuan Anh Dinh Robin Doss

National University of Singapore Deakin University Deakin University
taqt@comp.nus.edu.sg anh.dinh@deakin.edu.au robin.doss@deakin.edu.au

ABSTRACT

Smart contracts in Ethereum blockchain are executed by the Ethereum
Virtual Machine (EVM), which tracks the contracts’ resource con-

sumptions in units of gas. Each transaction appearing on the blockchain

incurs a transaction fee proportional to the number of gas it con-
sumed. The blockchain imposes a limit on the maximum amount of
gas per block. Our goal is to reduce gas consumption per transac-
tion, which can lead to lower transaction fees and more transactions
per block. Our vision is to exploit mutli-query optimization — a
common technique in database — to realize this goal. This is based
on the insight is that many transactions in a block involve the same
smart contract, thus there are opportunities for sharing computa-
tion and state access.

We confirm that our vision is viable, by collecting data from
Ethereum blockchain and analyzing it to estimate the opportunities
for execution sharing. We find that accessing data in the ledger
accounts for more than 50% of total gas per block, and up to 25% of
data access operations involve the same addresses. We evaluate the
potential gas saving amount under an ideal block-level cache that
stores results of data access operations in the same block. Any oper-
ation that can be served directly from the cache is considered warm
access. We show that this mechanism achieves up to 23% gas reduc-
tion on average, most of which comes from popular Decentralized
Finance applications.

We discuss four technical challenges in realizing our vision. The
first is to design an efficient caching mechanism for EVM. The sec-
ond is to ensure the correctness, security, and compatibility when
implementing it into existing EVM clients. The third is to restruc-
ture the existing transaction fee mechanism to fairly distribute the
benefits from multi-query optimization. The final challenge is to
understand and improve the incentives of the validators in adopting
our vision.

PVLDB Reference Format:

Duy Cuong Nguyen, Vinh Duc Tran, Van Dang Tran, Quang-Trung Ta,
Tien Tuan Anh Dinh, and Robin Doss. Towards Reducing Blockchain Gas
Fees via Multi-Query Optimization [Vision]. PVLDB, 14(1): XXX-XXX,
2020.

doi: XX XX/XXX. XX

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

PVLDB Artifact Availability:
The source code and data is available at https://github.com/dangtv/Ethereum-
Transaction-Trace.

1 INTRODUCTION

Ethereum is the second most valuable blockchain with a market
cap of over 400B USD [2]. Its support for smart contracts drives
the innovations in decentralized finance applications whose total
locked value peaked at 110B USD in 2021 [3]. A smart contract
encodes user-defined computation and is executed by the Ethereum
Virtual Machine (EVM). Since the execution is replicated over the
blockchain nodes (called validators), there is a risk of denial of
service (DoS) attacks. Ethereum’s main defense against DoS is to
restrict resource consumption. In particular, EVM tracks resource
consumption in units of gas and enforces a limit on the number
of gas per block. A user sending a transaction to Ethereum must
include a gas fee as payment for the transaction [10]. The more gas
a transaction consumes, the higher the fee.

Our goal is to reduce the number of gas consumed per block.
Given a list of transactions comprising a block, we aim to execute
them with the smallest number of gas. Realizing this goal leads
to three immediate benefits to the Ethereum ecosystem. First, the
users pay lower transaction fees, given a fixed price per gas unit.
Second, reducing the gas consumption of a transaction can prevent
the out-of-gas errors that lead to transaction failures. Third, each
block can include more transactions, earning higher fees for the
validators.

Our key insight is that transactions in the same block have com-
mon operators whose execution context and results can be reused.
This is based on the observation that many transactions in the
block may invoke the same smart contract with the same execution
paths. As a result, there are overlapping in computation and data
access operations. We propose to apply multi-query optimization
— a well established database technique — to extract the benefits
of sharing across transactions. Our approach differs from existing
works on gas optimization that modify smart contracts to produce
gas-efficient codes [1, 5, 19]. These works focus on how much gas
can be reduced in one transaction, whereas we focus on how much

licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.
doi: XX XX/XXX. XX

https://doi.org/XX.XX/XXX.XX
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://github.com/dangtv/Ethereum-Transaction-Trace
https://github.com/dangtv/Ethereum-Transaction-Trace
https://doi.org/XX.XX/XXX.XX

gas can be saved (or re-used) across multiple transactions. Our ap-
proach also differs from layer-2 (L2) systems such as rollups [9]. L2
reduces gas cost by execute transaction in a separate blockchain and
periodically update the states on the original (layer-1) blockchain,
whereas we target transactions on layer-1 directly.

Ry > Ry > Ry Ry ™ Rz > Ry

/lxl\ /M\
/N / N\
Ry R, Rs R, R3 Ry

(a) Multi-query optimization with relations.

contract A:
mapping (address = uint32) balances;
function incBal(address a, uint32 val):
AincBal(X, _2)_ . if Ibalances[a]
-7 throw;
balancesla] += val;

tx1 - - :q'_"lCBa’(X, 1)

tx, =~

(b) Data sharing across blockchain transactions.

Figure 1: Examples of sharing computation and data access
across queries.

Figure 1 shows an example of multi-query optimization in rela-
tional databases, and how the technique is extended to Ethereum
transaction execution. In Figure 1a two join queries, namely R >«
Ry »< R3 and Ry »< R3 > Ry, share a sub-query Ry > R3. By materi-
alizing this sub-query, one of the query can use the materialized
results directly instead of recomputing the sub-query.

In Figure 1b, a smart contract is invoked by two transactions in
the same block. Both transactions invoke the same method giving it
the same address X. They both read and write to the same storage
memory at balances[X]. If an EVM executor were able to cache the
results of data access operations, the second transaction tx; would
be able to re-use some results from tx;. In particular, after tx; is
executed, the value of balances[X], whether it was updated, would
be cached and be re-used for the conditional check in txs, thus
saving the cost of reading it from the ledger. Furthermore, the write
from tx; could be buffered and merged with that of tx;, thereby
saving the cost of writing to the ledger.

To understand the opportunities for sharing gas consumption
across transactions in the same block, we collect and analyze de-
tailed execution traces of Ethereum transactions. We find that data
access accounts for over 50% of total gas per block, and up to 25%
of data access operations involve the same storage addresses. We
estimate the benefits of multi-query optimization by extending the
EVM’s data caching mechanism, which works within a single trans-
action, to support sharing across multiple transactions. In particular,
we cache the results of read and write operations of transactions
in the same block. A cache hit means the data access operation
can be served directly from the cache, and therefore is charged a
small amount of gas, for example, that of a warm access. A cache
miss means the data is not present in the cache or the cached data
is invalid, the data access operation is equivalent to a cold access

and is charged the corresponding amount of gas. Our analysis on
Ethereum data shows up to 23% gas reduction on average, most of
which come from popular Decentralized Finance applications. We
explain the access patterns in real smart contracts that benefit the
most from caching.

We then discuss challenges that need to be addressed in order
to reap these opportunities. The first is how to build an efficient
data-sharing mechanism across transactions in a block. This in-
volves exploring the cache design, and understanding the trade-off
between the performance overhead and the amount of gas saved.
As the benefit of caching depends on transactions in a block, how
to determine if caching is useful for executing that block? The
second is to ensure correctness, security, and compatibility when
implementing this new caching layer. The next question is how
to design a new gas fee structure that accounts for shared data
access. In particular, one challenge is to distribute the gas-saving
benefits fairly among transactions. The final question is to quantify
the incentives for validators to adopt data access sharing, i.e., are
they collecting more fees as a result of being able to pack more
transactions per block?

In summary, we make the following contributions:

(1) We present a vision of using multi-query optimization to re-
duce transaction gas consumption in Ethereum, by enabling
the sharing of data access operations.

(2) We demonstrate that our vision is practical, by analyzing
real Ethereum execution traces and showing up to 35% of
storage operations are accessing the same storage address.
We estimate that simple caching of read and write opera-
tions can reduce up to 50% the amount of gas consumed
per block.

(3) We discuss research questions opened up by our vision.
These questions concerns the design of the cache, the end-
to-end integration to EVM, and the incentives structure.

The rest of the paper is structured as follows. Section 2 provides
background and related work on the Ethereum gas mechanism
and multi-query optimizations. Section 3 describes our analysis of
the cross-transaction sharing opportunities in Ethereum. Section 4
presents the estimates of gas reduction via storage caching, and
shows examples of transactions that observe large amounts of
saving. Section 5 discusses challenges before Section 6 concludes.

2 BACKGROUND
2.1 Ethereum Virtual Machine

Smart contracts are compiled into bytecodes and executed by EVM
clients. The EVM is stack-based, and it charges a certain amount
of gas for each opcode executed [18]. An Ethereum transaction
specifies the amount of gas it is willing to pay, and the EVM clients
keep track of the number of remaining gas when it executes the
transaction. When the transaction runs out of gas, it is aborted.
Table 1 shows a trace of a transaction execution, including the
states being tracked by the EVM. In particular, PC refers to the
position in the bytecode, Operation to the opcode being executed,
Gas to the remaining gas avaialbe for the transaction, and GasCost
to the gas cost of the opcode. The other states include Stack, which
is the content of the current stack, Memory which is values in
memory, and Depth which is the depth of the call stack.

Step PC Operation Gas GasCost Stack Memory Depth

[1] 0 PUSHT 56321 3 [0 1
[2] 2 PUSHT 56318 3 [0x80] 1 1
[3] 4 MSTORE 58315 12 [0x80,0x40] [] 1
[[0....0080] 1

4] 5 CALLVALUE 58303 2 0

Table 1: An example of the transaction execution trace.

Storage Keys. Each smart contract is given a storage memory
space. Any update to the contract storage is made persistent in
the blockchain. The storage is essentially a large array of 32-byte
slots. Each contract state is stored at an index of array [11, 18].
We refer to this index as storage key. A combination of contract
address and storage key uniquely identifies the state. We refer to
this combination as storage address. During the execution of a read
or write operation, EVM uses the storage key pushed on the stack
to identify the corresponding state.

2.2 Gas Mechanism

Gas Fee. Each transaction in Ethereum consumes an amount
of gas units, which is the sum of the gas costs of all the executed
opcodes. Ethereum enforces a hard limit of 30 million gas units per
block. The transaction owner pays a gas fee f to the validators. In
the original version of Ethereum, the gas fee is the product of the
number of gas units g and a gas price p, i.e. f = g X p. The latter
is specified by the transaction owner, which creates incentives for
the validators to include transactions with the highest fees in the
block.

The latest version of Ethereum implements a major change in
gas fee proposed in EIP-1559 [10, 14]. Specifically, the gas price
p includes a base price b that captures network condition, and a
priority price prio. The base fee b X g is burnt, and the remaining b x
prio is paid to the validators. Our goal of reducing g per transaction
is orthogonal to the gas price mechanism because lower g directly
leads to lower gas fees given any fixed gas price.

Storage Operation Cost. When executing a transaction, the
first read or write access to a storage address is considered a cold
access and is charged a large amount of gas (e.g., 21000 gas for
write). Subsequent read or write to the same address is considered
a warm access which is charged a smaller amount of gas (e.g., 100
gas for warm write). EIP-2930 [16] proposes an access list parameter
containing a list of addresses and storage keys that a transaction
plans to access. When the EVM executes the transaction, any access
to a storage address in the list is considered warm access. Empirical
analysis of EIP-2930 demonstrates that access lists are not widely
used, and that they can lead to sub-optimal gas consumption [6].

2.3 Multi-Query Optimization

Multi-query optimization was used in relational databases to re-
duce the execution time of a batch of queries. Early works focus
on join queries and propose algorithms that quickly find shared
components of the query plans, whose results are materialized and
re-used by multiple queries [8, 12, 13]. Figure 1a shows an example
of two query plans with (Ry > R3). More recent works focus on

batch processing systems such as MapReduce, where multi-query
optimization are in the form of sharing of I/O scanning and inter-
mediate outputs such as those of map functions [7, 17].
Multi-query optimization (MQO) assumes that queries are pro-
cessed in batch, which makes it unsuitable for applications requir-
ing low latency such as traditional OLTP applications. Ethereum
executes transactions in batches, making it a nature fit for MQO.
Realizing the full potentials of MQO requires careful design choices.
In the example in Figure 1a, storing and re-using Ry < R3 can be
more costly than recomputing it when the results are large or I/O
contention is high. In our settings, using MQO to reduce transaction
gas may lead to the validators earning lower fees from executing
the block, which gives the validators no incentives to adopt MQO.

3 CROSS-TRANSACTION SHARING
OPPORTUNITIES

3.1 Dataset

We build a dataset containing detailed execution traces of Ethereum
transactions. We use the Go-Ethereum (Geth) client [4] to download
3000 blocks, from four distinct periods, covering blocks from num-
ber 19519860 to number 20050000. We then use Geth to replay them
(0.7M transactions) and call the bug_traceTransaction function
to collect execution traces. Table 1 shows an example of the traces.
The compressed trace is of 165GB in size.

We release the dataset and analysis code at https://github.com/
dangtv/Ethereum-Transaction-Trace.

3.2 Gas Cost Analysis

We first analyze how frequently different opcodes are used in real
transactions, and how much they account for the transaction gas
consumption. Figure 2[a,b] shows the distributions. The most pop-
ular opcodes are stack-related, which reflects the fact that EVM is a
stack-based machine. Although storage operations, namely SLOAD
and SSTORE, have a low frequency of 0.7% of all the opcodes, they
account for over 70% of the total transaction gas. This finding is
aligned with EIP-2929 [15] that have different costs for warm and
for cold accesses.

We next examine the storage operations across transactions in
the same block. Figure 2[c] shows how many operations access the
same storage address. In particular, 25% of reads and 34% of writes
are to the same address. This finding suggests the opportunities of
sharing storage accesses across transactions.

4 GAS SAVING VIA CACHING

Motivated by the opportunities of sharing storage access, we ana-
lyze the collected traces to estimate the benefits of caching storage
access. We consider a per-block cache for storing the results of
SLOAD and SSTORE. It works in the same way as current caching
mechanisms in Ethereum, i.e. EIP-2930, except that the cache con-
tent persists for the duration of the block, as opposed to the duration
of a transaction.

4.1 Estimating Gas Cost

Given the execution trace of a block, we compute transaction gas
using a block-level cache by identifying the cold and warm accesses.

https://github.com/dangtv/Ethereum-Transaction-Trace
https://github.com/dangtv/Ethereum-Transaction-Trace

PUSH2

JUMPDEST

ssToRe 40
(0.16%) \ Fop

SLOAD
! DUP2
JUMPI
ADD

(0.51%)

(a) Frequency

(b) Gas cost

SSTORE

le6

[SSTORE
s SLOAD

NCow s w

Number of operations

-

Cold access Hit

(c) Hit rate

Figure 2: Gas cost analysis, and the opportunities for storage sharing.

We extract all SLOAD and SSTORE opcodes from the trace, and
group them by storage address, i.e., by the contract address and
storage key. Each storage address then consists of a list of operations
sorted by their indices in the original trace.

Transaction Contract StorageKey Opcode StorageValue GasCost NewCost
19519861-0 0x..c78ba3 0OxcOc2a4.. SLOAD 0x10662a8.. 2100 2100

19519861-0 0x...c78ba3 OxcOc2a4.. SSTORE 0x1 100 100
19519861-0 0x...c78ba3 OxcOc2a4.. SLOAD 0x1 100 100
19519861-6 0x..c78ba3 0OxcOc2a4.. SLOAD 0x1 2100 100
19519861-8 0x...c78ba3 OxcOc2a4.. SLOAD 0x1 2100 100

Table 2: Example of estimated gas cost for SLOAD.

Transaction Contract StorageKey Opcode StorageValue GasCost NewCost
19519861-1 0x...c78ba3 0xcOc2a4.. SLOAD 0x0 2100 2100
19519861-1 0x...c78ba3 0OxcOc2a4.. SSTORE 0x106a8.. 22100 100
19519861-1 0x...c78ba3 OxcOc2a4.. SLOAD 0x106a8.. 100 100
19519861-1 0x...c78ba3 0OxcOc2a4.. SLOAD 0x106a8.. 100 100
19519861-1 0x...c78ba3 0xcOc2a4.. SSTORE 0x0 100 100

Table 3: Example of estimated gas cost for SSTORE.

SLOAD. If the first operation of a given storage address is a
SLOAD, then the first SLOAD is considered cold access (2100 gas
units), and all subsequent ones are warm accesses (100 gas units).
If the first operation is an SSTORE, the remaining SLOADs of the
same addresses are warm accesses. Table 2 shows an example where
two SLOADs become warm because of the SLOAD of an early
transaction in the block.

SSTORE. We exploit the fact that EVM only commit changes to
the ledger after all transactions in the block have been executed,
therefore writes to the same address can be batched and only the
latest value need to be written to the ledger. As a result, when there
are multiple SSTOREs that accessing the same storage address in a
block, at most one of them need to be a cold access. There are even
cases when no cold accesses are necessary, as illustrated in Table 3.
In this example, the final SSTORE updates the storage address with
the same value as at the beginning of the block, meaning that the
address does not change and no update to the ledger is needed.

4.2 Analysis

We evaluate the amount of gas saved over all the storage operations,
and over the total gas consumption. We also examine if different
operations lead to different saving.

lel0

4.0 Original Gas Cost

B New Gas Cost 18.00%
3.5 saved

Gas Cost

21.99%
saved

SSTORE SLOAD

Storage Gas Total Gas

Figure 3: Gas saving analysis.

1404 m

o120 H M 1‘
]
2 100 ’P i
€
3 604 ﬂ
p n

404 H

20 _ il m

0L Wﬁﬂ\m Hm | | H-H ‘ Hﬂmwm i

10 15 20 25 30 35 40

Gas-Saved Percentage (%)

Figure 4: Distribution of per-block gas saving.

Figure 3 shows up to 24% gas reduction across all storage oper-
ations, and average of 18% reduction over the original cost. The
results confirms the benefit of caching. Figure 3 also compares the
saving of SLOAD versus that of SSTORE. Both the saving percent-
age and the number of gas unit saved by SSTORE are higher than
those of SLOAD. This is because of the hit rate shown in Figure 2[c],
and because turning a cold SSTORE to a warm one saves 20900
units of gas, whereas turning a cold SLOAD to a warm one saves
only 2000 units.

Figure 4 shows the distribution of the number of gas units saved
per block. The peak is at 25%, and we observe that some blocks
save up to 50%. We discusses these cases in the next section.

Contract . SSTORE . SLOAD Original Saved Saved
Hit rate | Cold | Warm | Hit rate | Cold | Warm Gas Gas Percentage
0x...99e14 100 4 4 50 4 12 90000 83600 92.88
0x...4a320 0 0 0 92 744 0 15622400 1414000 90.50
0x...9b347 100 3 3 0 3 0 66600 59700 89.63
0x...4693f 100 2 2 0 2 0 44400 39800 89.63
0x...2906 100 46 46 4.17 48 48 1030200 919400 89.24

Table 4: Top 5 Contracts with Highest Percentage of Gas Saved

4.3 Smart Contract Analysis

We analyze contracts that benefit the most from caching, in terms
of the percentage and number of gas units saved.

4.3.1 Saving percentage. Table 4 lists the contracts with the highest
saving percentage. These contracts are not popular and do not come
with a source code. Therefore, we only list their deployed addresses.
Some contracts have over 90% saving, suggesting that they contain
repetitive patterns which are highly amenable to caching.

Contract 0x...99e14 - 100% SSTORE hit rate This contract has two
SSTOREs appearing after a SLOAD, and the second SSTORE restores
the original value. We reverse-engineer the bytecode and find that
the contract updates a variable to some value and then reset back
to 0. Our caching strategy considers these SSTORE as warm access,
thus the entire contract execution has no cold SSTORE.

Contract 0x...4a320 - 92% SLOAD hit rate. This contract has a
single state variable with a static storage key (0x4). Since SLOAD
operations are cached across transactions within a block, more
transaction calls to this contract in the same block result in higher
cache hits, leading to significant gas savings.

4.3.2 Saving amount. Table 5 lists the top contracts that have the
most saving in terms of the number of gas units. These contracts
are popular, well-known decentralized finance applications. In par-
ticular, we find contracts such as Wrapped Ether and Uniswap:
Universal Router in this list, with saving of upto 81.87%. We observe
high hit rates for both SSTORE and SLOAD in the Universal Router
contract (91.41% and 92.48%), suggesting that the contract contains
access patterns amenable to caching.

4.3.3 Wrapped Ether (WETH). This contract turns native Ethereum
currency (Ether) into ERC-20 tokens. It has a market cap of over
$10B as of November 2024. We observe 63.24% gas saving with this
contract. To explain this significant saving, we outline below its
main data structures and its most frequently invoked functions.

uint256[] array_0; // STORAGE[0x0]

uint256[] array_1; // STORAGE[@x1]

mapping (uint256 => uint256) _balanceOf; // STORAGE[@x3]

mapping (uint256 => mapping (uint256 => uint256)) _allowance; // [0x4]
uint8 _decimals; // STORAGE[0x2] bytes @ to @

function withdraw(uint wad) public {
require(balanceOf[msg.sender] >= wad);
balanceOf[msg.sender] -= wad;
msg.sender.transfer(wad);
Withdrawal(msg.sender, wad);

}

function transfer(address dst, uint wad) public returns (bool) {
return transferFrom(msg.sender, dst, wad);

3

function transferFrom(address src, address dst, uint wad) {...} {

require(balanceOf[src] >= wad);

if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) {
require(allowancel[src][msg.sender] >= wad);
allowance[src][msg.sender] -= wad;

}

balanceOf[src] -= wad;

balanceOf[dst] += wad;

Transfer(src, dst, wad);

return true;

}

This contract can be called from many other contracts. Figure 5
shows the function call trace of one transaction invoking WETH
multiple times. On line 7, the Uniswap V2 contract transfers an
amount wad = 31,286, ... of WETH to the MEV Bot contract
at address 0xd129. . .ecd. This transfer results in an update of
the MEV Bot’s WETH balance: balanceOf[MEV Bot] += wad.
Immediately after that, on line 13, the withdraw function is invoked
with msg.sender = MEV Bot, using the same wad value to convert
the MEV Bot’s WETH into ETH, that is: balanceOf[MEV Bot] -=
wad. During this process, the WETH balance of the MEV Bot is
essentially restored to its original value. This pattern of temporarily
increasing and then restoring the balance is common in Ethereum
transactions, especially during conversions between WETH and
ETH. This is because conversion to and from WETH is necessary
in applications or contracts that only supports ERC-20 tokens as
inputs. One possible explanation for the trace in Figure 5 is that
a user wants to exchange an amount of USDT for Ether, where
the former is a ERC-20 token and the latter is not. The transaction
invokes Uniswap, which returns an amount of WETH to the user’s
account, which user then converts immediately back to Ether.

We note that these repeated state changes, in which the same
storage address is updated multiple times in a block, present an
opportunity to save on cold SSTORE access. Our caching mecha-
nism (Section 4.1) goes even further, i.e. it removes all cold SSTORE
accesses, when multiple updates restore the original values.

5 OPEN RESEARCH QUESTIONS

The results presented in the previous sections confirm the viability
of our vision. In particular, they demonstrate that a simple caching
strategy can significantly reduce the gas consumption of the entire
block, leading to potentially large savings for users. In the next
steps, we plan to realize our vision by implementing this proposal
and integrating it into existing EVM clients. We discuss below four
research and technical challenges that need to be overcome before
our vision becomes reality.

The first challenge is how to implement an efficient and robust
caching mechanism for data access operations that can be inte-
grated into existing EVM clients. This requires a detailed analysis

Contract SSTORE SLOAD Original Saved
Hit rate | Cold | Warm | Hitrate | Cold | Warm Gas Percentage
Wrapped Ether 35 327196 | 154409 41.71 302497 | 725888 | 3.47 x 107 63.24
Stable Coin: USDT 3.95 163805 | 19635 55.69 527235 | 165786 | 2.25 x 10° 30.12
USDC Token 8.17 84748 16207 51.80 177758 | 387738 | 9.98 x 108 27.88
Uniswap: Universal Router | 91.41 53706 | 50394 92.48 52386 | 127078 | 2.86 x 10° 81.87
MAGA Token 11.20 19520 4617 53.13 72144 | 115988 | 3.06 x 108 37.75
Table 5: Top 5 Contracts with Highest Saving Amount.
= DN404 Exploiter
[[0]1EL value: ©.000000000000145429 MEV Bot: Oxd12...ecd. EmaEm () | > O
[1]la ox8d8404f8cca4cB8834ca3cable54887ae47724bee. [caitaata) (token=Tether: USDT Stablecoin, value=111,
[1]@D Tether: USDT Stablecoin. [GIam) (_to=Uniswap V2: USDT, _value=111,726,971) » | ()
[[1]EW Uniswap V2: USDT. candata’) (amount@Out=31,268,762,593,109,033, amountlOut=0, to= MEV Bot: @xdl2...
[2]a | Wrapped Ether (WETH). [catidata) (dst = MEV Bot: ©xdl2...ecd, wad=31,268,76 93,109 4
[2][evE Uniswap V2: USDT. [candata) (reserve@=18,841,660,013,096,330,556,154, reservel=67,121,611,364,823)
Uniswap V2: USDT. (sender= MEV Bot: ©xdl12...ecd, to= MEV Bot: @xdl2...ecd, a
13 E/[11@m wrapped Ether (WETH). [Gima) (wad=31,268,762,593,109,033) b ()
[2][a) value: ©.031268762593109033 MEV Bot: @xdl2...ecd. (raw data) 4 O
Wrapped Ether (WETH). calldata) (SIC= MEV Bot: ©xdl2...ecd, wad=31,268,762,593,109,033)
[1]a value: ©.031268762593185638 DN404 Exploiter. (raw data) 4)

Figure 5: An example transaction of WETH to ETH Conversion (https://tinyurl.com/blockbeef)

StorageKey|Opcode | Transaction | GasCost | StorageValue | NewCost
0x4 SLOAD [19720551-69| 2100 0x1 2100
0x4 SLOAD |19720586-70| 2100 0x1 2100
0x4 SLOAD [19955947-50| 2100 0x1 2100
0x4 SLOAD [19955947-51| 2100 0x1 100
0x4 SLOAD [19955947-52| 2100 0x1 100
0x4 SLOAD [19955947-53| 2100 0x1 100

Table 6: SLOAD pattern in contract 0x...4a320

of the EVM architecture and the implementation of the caching
layer to ensure that it both can run fast and save as much gas as
possible while incurring low overhead. Since caching consumes
resources, an interesting question is how to predetermine if there
are benefits in caching, before actually executing the block. There
are several potential solutions to address this question. For example,
one could perform static analysis on the smart contract source code
and bytecode to identify the shared data access patterns. The other
approach is to dynamically execute the transactions in a sandbox
environment to identify the commonly accessed storage addresses.
More advanced methods can involve combining static analysis,
dynamic execution, and other methods in program analysis, com-
piler optimization, and database query optimization to identify the
caching opportunities for each block.

The second challenge is to ensure correctness, security, and com-
patibility when implementing this caching layer. More specifically,
the caching algorithm must be correct, that is, it must produce the
same results as the original EVM clients when executing transac-
tions without caching. A potential issue is that transactions can
be aborted, thus any uncommitted updates must not be shared.
The implementation must also be secure, ensuring that it does not
introduce any vulnerabilities or security risks. This is important

given the tremendous amount of money being locked on Ethereum.
Furthermore, the implementation needs to be compatible with the
existing EVM clients, so that it can be integrated into existing EVM-
based networks.

The third challenge is to design a new gas fee structure that
accounts for shared access. In the new execution model, the early
transactions in the blocks incur cold accesses, whereas the latter
can enjoy warm accesses. Therefore, both the cost and benefits of
caching must be distributed fairly among the transactions. One
potential solution is to charge all the transactions the average cost
of all the warm and cold accesses. The transaction still includes a
payment for gas, but any gas surplus due to sharing is returned
back to the transaction owner.

The final challenge is to quantify the benefits of caching for
validators. While sharing storage access can potentially save gas
for users, it introduces overhead for validators to maintain the
cache. Furthermore, since it can reduce the gas usage of each trans-
action, the fee earned by the validators can be lower. Although
the validators can pack more transactions per block, thereby earn-
ing more fees on average, the actual benefits need to be validated.
We envision that initial validation can be based on game theoretic
models.

6 CONCLUSION

We presented a vision of exploiting multi-query optimization for
reducing Ethereum gas consumption. The key idea is to re-use re-
sults of data access operations across transactions in the same block.
We estimated the benefit of sharing via simple cross-transaction
caching mechanism. We analyzed Ethereum execution trace and
found that the caching technique is effective. We observed up to
20% gas reduction on average, and many popular decentralized
finance applications enjoyed significant savings.

https://tinyurl.com/blockbeef

REFERENCES

(1]

(9]

[10]

Ting Chen, Youzheng Feng, Zihao Li, Hao Zhou, Xiaopu Luo, Xiaoqi Li, Xiuzhuo
Xiao, Jiachi Chen, and Xiaosong Zhang. 2020. Gaschecker: Scalable analysis for
discovering gas-inefficient smart contracts. IEEE Transactions on Emerging Topics
in Computing 9, 3 (2020), 1433-1448.

CoinMarketCap. 2024. CoinMarketCap: Cryptocurrency Prices, Charts And
Market Capitalizations. https://coinmarketcap.com/.

DefiLlama. 2024. DefiLlama - DeFi Dashboard, TVL Aggregator. https://defillama.
com/.

The go-ethereum Authors. 2024. Go-Ethereum: Official Go implementation of
the Ethereum protocol. https://geth.ethereum.org.

Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and
Yannis Smaragdakis. 2018. Madmax: Surviving out-of-gas conditions in ethereum
smart contracts. Proceedings of the ACM on Programming Languages 2, OOPSLA
(2018), 1-27.

Lioba Heimbach, Quentin Kniep, Yann Vonlanthen, Roger Wattenhofer, and
Patrick Ziist. 2023. Dissecting the eip-2930 optional access lists. arXiv preprint
arXiv:2312.06574 (2023).

Alekh Jindal, Konstantinos Karanasos, Sriram Rao, and Hiren Patel. 2018. Select-
ing subexpressions to materialize at datacenter scale. Proceedings of the VLDB
Endowment 11, 7 (2018), 800-812.

Tarun Kathuria and S Sudarshan. 2017. Efficient and provable multi-query
optimization. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems. 53-67.

L2BEAT. 2024. The state of layer 2 ecosystem. https://12beat.com/scaling/
summary.

Yulin Liu, Yuxuan Lu, Kartik Nayak, Fan Zhang, Luyao Zhang, and Yinhong
Zhao. 2022. Empirical Analysis of EIP-1559: Transaction Fees, Waiting Times,

(1]

(12]

(13]

[14]

[15]

[16]
(17]
(18]

(19]

and Consensus Security. In CCS.

Nicola Ruaro, Fabio Gritti, Robert McLaughlin, Ilya Grishchenko, Christopher
Kruegel, and Giovanni Vigna. 2024. Not your Type! Detecting Storage Collision
Vulnerabilities in Ethereum Smart Contracts. In Netw. Distrib. Syst. Security
Symp.

Timos K Sellis. 1988. Multiple-query optimization. ACM Transactions on Database
Systems (TODS) 13, 1 (1988), 23-52.

Kian-Lee Tan, Shen-Tat Goh, and Beng Chin Ooi. 2001. Cache-on-demand:
Recycling with certainty. In Proceedings 17th International Conference on Data
Engineering. IEEE, 633-640.

Vitalik Buterin and Eric Conner and Rick Dudley and Matthew Slipper and Ian
Norden and Abdelhamid Bakhta. [n.d.]. EIP-1559: Fee market change for ETH 1.0
chain. https://eips.ethereum.org/EIPS/eip-1559. Ethereum Improvement Proposals
([n.d.]).

Vitalik Buterin and Martin Swende. [n.d.]. EIP-2929: Gas cost increases for state
access opcodes. https://eips.ethereum.org/EIPS/eip-2929. Ethereum Improvement
Proposals ([n. d.]).

Vitalik Buterin and Martin Swende. [n.d.]. EIP-2930: Optional access lists. https:
//eips.ethereum.org/EIPS/eip-2930. Ethereum Improvement Proposals ([n. d.]).
Guoping Wang and Chee-Yong Chan. 2013. Multi-query optimization in mapre-
duce framework. Proceedings of the VLDB Endowment 7, 3 (2013), 145-156.
Gavin Wood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 2014 (2014), 1-32.

Abdullah A Zarir, Gustavo A Oliva, Zhen M Jiang, and Ahmed E Hassan. 2021.
Developing cost-effective blockchain-powered applications: A case study of the
gas usage of smart contract transactions in the ethereum blockchain platform.
ACM Transactions on Software Engineering and Methodology (TOSEM) 30, 3 (2021),
1-38.

https://coinmarketcap.com/
https://defillama.com/
https://defillama.com/
https://geth.ethereum.org
https://l2beat.com/scaling/summary
https://l2beat.com/scaling/summary
https://eips.ethereum.org/EIPS/eip-1559
https://eips.ethereum.org/EIPS/eip-2929
https://eips.ethereum.org/EIPS/eip-2930
https://eips.ethereum.org/EIPS/eip-2930

	Abstract
	1 Introduction
	2 Background
	2.1 Ethereum Virtual Machine
	2.2 Gas Mechanism
	2.3 Multi-Query Optimization

	3 Cross-Transaction Sharing Opportunities
	3.1 Dataset
	3.2 Gas Cost Analysis

	4 Gas Saving via Caching
	4.1 Estimating Gas Cost
	4.2 Analysis
	4.3 Smart Contract Analysis

	5 Open Research Questions
	6 Conclusion
	References

